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Introduction

The purpose of this research effort is to develop a means to use, and to ultimately

implement, hp-version finite elements in the numerical solution of optimal control problems.

Under NAG-939, the hybrid MACSYMA/FORTRAN code GENCODE was developed

which utilized h-version finite elements to successfully approximate solutions to a wide

class of optimal control problems. In that code the means for improvement of the solution

was the refinement of the time-discretization mesh. With the extension to hp-version

finite elements, the degrees of freedom include both nodal values and extra interior values

associated with the unknown states, co-states, and controls, the number of which depends

on the order of the shape functions in each element. For details, see [1].

Progress During This Period

Optimal Control Problems

A FORTRAN code has been developed using higher-order finite-elements to approx-

imate solutions to a particular subset of optimal control problems. The cost function to

be minimized for these problems can contain both an scalar penalty, ¢, on the states, x,

at the initial time or final time, tl, plus an integral penalty, L, on the states and controls,

u, in this form:

J=¢[x(to),x(ts),tl]+ L(x,u) dt (1)

The state rates are governed by differential equations

= I(x,u) z • R"',u • R _ (2)

where f is an autonomous function of the state vector x. The boundary conditions can be

specified at the initial time, the final time, or some combination of both, in the form

v[x(0),x(ts),tl] = 0 _ • R-bo (3)

This formulation also allows for control inequality constraints of the form:

g(x, u) < 0 g • R"_ np < n_ (4)

which are enforced through use of slazk variables, k.

Adjoining the differential equations, boundary conditions, and control constraints to

the original cost function by means of Lagrange multipliers I, t_, and # respectively yields

a new cost function jl:

j, = ¢[x(to),x(tI),tl ] + t, Tq_lx(O),x(tl),tf] + aT(_ _ x)l_+

_tl f + IT[f(x,u) JC]+ #T[g(x,u) + k2]} dt

(5)
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where _ are the values of the states at the final time, and tr is a set of Lagrange multipliers

used to ensure that the states are continuous at the initial and final times.

Next, to simplify notation, we define a Hamiltonian as

H = L + ATf -{- _Tg (6)

and define xf - x(tf) and xo -- x(to) To satisfy the first-order necessary conditions for a

local minimum, we follow the development in [1] and take the first variation of J, allowing

variations in the states, state rates, controls, Lagrange multipliers, slack variables, and

final time, yielding

$J' : _ + v _ + L + _T(f _ _) .__ DT(g + k 2) dtf _- _vT_
t!

+ b-_1+_ b-7]_1Jd_(tl)+ _o +_ _o)d_(to)+_(_-_)l_o

_i s [ OH 5x OH 5u+_(d__d_)l_o, + [-_-_ +____ __T_+_T(/__)

+ _#T(g + k 2) + 2_#Tk_k] dt

(7)

Given that the variations are continuous, d2 = dx. We then choose 6a = dA, integrate

_T_ by parts and expand the total differentials at the end points.

_(to) = ,_x(to)
dx(tf) = 5x(tf) + :i:(tl)dtt "

d_(ts) = _(t_) + £(ts)dts

(8)

Eq. (7) then becomes

0¢ vr0_ r (0¢ rO_55'= _ + _ / _(tl) + y_o + V _o ) _(to)

vT C_

:Oho T ,,+dtf --+_, --_+H +6vTqd+6AT(x-- ^ *I
t!

/ti' [OH 6x OH 6u+ [-_ + _ + _ + _(f- _)

+ _#T(g d- k 2) + 2#Tk6k] dt

(9)



Defining subscripts on H to denote partial derivatives and rearranging terms gives:

_j, = dry w + v --_ + H t! + dtf_ T _0¢ + vT OXIO_ A t!

(oo oo)+ + _ o_ _ _x(tf) + _ + _ _ + _ _x(to)
Oxf t,

• fl-4- dtfAT(x _:) + dtIl_TkZlt ! + 8vT_ + 8AT(x -- ^ t, tl- x)lto + [H,,_u

+ H=&x + _T&x Jr- &AT(f -- X) -4- &pT(g -b k 2) q" 2#Tk_k] dt

Now, defining A as

I _¢ vT C_ t = tO

Oxo Oxo

_T __ Oq_ vT O_

OX---_ + C_X f t = t f

and integrating the terms _T_x and _AT:_ by parts, Eq. (10) becomes:

O(]) T O_ _ T tl T t!$J' dtf -_ + v --_ + H/ + A $zlt o
t!

-- [(X -- x)T_]:_ + d_,f.Tk2[g] - dtf [_W(__ X)]g!

+ + + +

+ _gT(9 + k 2) + 2#TkiSk] dt

We will now enforce that _ = x and A = A at to and tf and define

0¢ vTC__-__+
cgt Ot

then Eq. (12) becomes

"T tl ^T [tI
_j, dtf(fI-4-H) q-dtfl_Tk21ty-4-evT_-[-_ _Xlt o= - x _A,to

t!

+ -

+ _#T(g + k2) + 2_rk_k] dt

(10)

(11)

(12)

(13)

(14)
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The time interval is broken up into N not necessarily equal length time elements, Ati,

such that the time at each element boundary {i is calculated as:

{1= to (15)
{i----- {i-1 + Ati i=2,...,N+l

and we define the states and controls at these nodes to be

:f:, = x(t,) i= 1,...,N-4- 1 (16)

fi, = u({,) i= 1,...,N+ 1 (17)

The time within the ith element, ti is expressed as ti = {i-1 + rAti where 0 g r _< 1 and

ti -- {i--1
(18)T

At_

so that dt = AtidT. Substituting these relationships into Eq. (14) gives:

( ) ^Ttl^Ttl6J' = dr! [-I + H + dtfDTk21tl + _vT_ + )_ 6X[t o -- X 6_lt o
tl

+EAti J0 LH'ifui + Hx,6zi + --_xi Ati
i

+  CS, + + k, + ar

where subscript i refers either to quantities within the ith element or to functions evaluated

using quantities within the i th element.

Higher-Order Shape Functions

From [2], we define C O shape functions for the variations of state equations"Lagrange

multipliers (or costates) and states in each element in terms of nodal values (superscript ^)

and internal values (superscript-).

rib--1

j=l

rib--1

_xi = 6&i(1 - T) + 62i+lT + _ (1 - T)rflj(T)Seij
j=l

(20)

Here nb is the order of the shape function polynomial being used, with nb= 1 representing

h-version shape functions, and the summation would be ignored. The functions f/j (_-) are

polynomials of order (j - 1) as defined in [2]. That functional form is necessitated by the
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time derivatives in Eq. (19) and required end conditions. The time derivative expression
looks like

d_xi

dT

rib--1

j=l

(21)

where

7j(r) = [(1 - r)r_j(r)]'

Similar expressions hold for the costates.

No time derivatives of the states and costates themselves are needed in Eq" (19), so

simpler shape functions are used

nb

J=l

^

Xi+l

,=o 1f" ,=o
O < r < l hi= aj(r)Xq 0<"I"<I

j-=l
^

r = 1 _i+I r = 1

(22)

where the functions aj (r) are again polynomials of order j - 1 as defined in [2].

For the controls, control constraint Lagrange multipliers, slack variables, and their

variations, again no time derivatives exist in Eq. (19), so the same easier shape functions
are used:

nb

nb

j=l

nb

j=l j=l

(23)

(24)

nb

j=l

nb

j=l

0<T<I

O<r<l

nb

j=l

O<T<I

(25)

(26)



Substituting these relationships into Eq.(19) gives

^T ^2 ,,_¢+I_XN+I _ _IT(SXl _ ._._¢+1_)iN+1 ..{__T_)il_jt = dtl#N+lkN+ 1 +

i

nb-1

+ H_, 52,(1- r) + &_i+lr + _ q(r)5_,ijJ

ha--1

+ j/T df£i(1 - r) T _f£,+lr T _ ej(r)eiij

j----1

nb nb

+ a_ (r)e_q i + _ (r) k/2_

j=l

+ 2 aj(r)[,,_ _ a_(rlk,_ y_ ajCr)aki_ dr)

\j=l j=l

T
N 1 nb -- 1 n b

i j:l j=l

kZi .
i j-----1 j=l

(27)

where

q(r) -- (1- r)r_j(r)

Due to the orthogonality of the chosen polynomials a(r) and 7(r), this equation
reduces to
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_j! ^T ^2 ^T _T_x I :_Tq_I_._N.{_ 1 .+. :_T_._I= dtf#N+lkN+ 1 Jr AN+I_XN+I --

+ _,_t, fo H_,

+ _,_(1 - _)gx,+ _51_gx, + _£,_(1- _)f, + _£,_+1_f,
rib--1

T _ [ej('r)&_THx, ÷ ej('r)_ATf,]
j-_l

4-

+2

T

i + as(r)k

5=1

5=1

+ _ _,_i,,1 - _,_+1i,,1+ _ _,,5-1_,5
• 5--2

dr

(28)
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Rearrangingterms gives

&T' =_ [--_l + gCl,l -- Atl fol(1-- r)fl dr]

N[ fo1 /o1 ]-{- Z_T --Xi--I,1 -- Ati-1 Tfi-1 dr + xi,1 - Ati (1 - r)fi dr
i----2

_'-1 [ /o1 ]+ _ _ _ -_,,j+l + at, .j(_)y,d_
i=1 j=l

jc__T _1 -- _1,1 -- A$i (1 - r) L= 1 + aj(r)_dfx , dr

f ,.I I" -_ I

q- Y_XT {--_i,1 -- hti / (1 - r) [L=, + _ as(r)AT f=,] dr,== L .o L 5=1

1-_- _i--1,1 -- Ati-1 r

N rib--1 { _01
i--1 j----1

{ Z'+_i:_+1 --,_N+I + AN,1 -- AtN r

^T ^2
+dtf#N+lkN+x + _suT_

N nb 1

t! i 5=1

i 5=1 5----1

+_ _&sAt' fo 2.5(r) -5(,)#,5
i j:l

E nb
Lx,_z o¢- Z °_5(T)_T-1,5 fx,-I

j--1

[ - ]}
5----1

I nb
L=N + _ as(r)_TV,ff=N

j----1

H_,a_(r).dr

dr

T

dr

(29)

This grouping of terms shows the equations to be solved as coefficients of the various

variational quantities. When the coefficients are set equal to zero, the variation of J' is



zero,approximating the first-ordernecessary conditions for optimal control.In addition to

the above, the costate boundary conditions need to be enforced, as provided forpreviously

iT+ o¢ v =°
(30)

0¢ vrO_  =0
iTTi C_Xf (9Xf

The equations when there axe multiple phases are similar and can also be handled

by the code. Extra boundary conditions have to be specified, and the appropriate jump

conditions for the costates and Hamiltonian axe handled automatically.

Implementation

The above equations are solved using a restricted-step. Newton-Raphson method, as

implemented in a FORTRAN code. Sparse linear systems solvers from the Harwell subrou-

tine library [3] axe used. The user needs to specify an initial guess for all of the variables

for the Newton-Rapheson iteration.

The symbolic-manipulation package Macsyma developed by Symbolics [4] is used to

generate analytic partial derivatives. Macsyma is also used to generate the a(w) and e(w)

polynomials, which come from a recursion formula involving derivatives and integrals of

polynomials, as developed in [2]. The user specifies the order of the polynomials, and

Macsyma generates the necessary ones. At this time all variables have the same order

shape function, but eventually the order for each variable will be able to be independently

specified. The order of the shape functions can be changed between runs, but only if the

desired number is less than that specified when the Macsyma-gcnerated code was made.

Otherwise the necessary polynomials will not be available.

The integrals in Eq. 29 are approximated using Gaussian integration, with the user

selecting the number of Gauss points, which at this time is constant for all of the inte-

grations. That number, as well as the number of elements can be adjusted between runs

through use of a namelist file and appropriate changes to the initial guess file.

Results

The code has been tested on a linear,single-state,single-controlsystem and on a

multiple-state,single-controlsystem with nonlinear system dynamics.

Linear Problem The linear problem we considered is a minimum energy problem for getting

from one position to another. The system dynamics axe

5_ = x + u (31)
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where x is the state and u is the control. The boundary conditions are

gll = x0 - (e- 1)

¢12 = x I - (1- e) = 0

and the cost function is

j_o 11 2J= _u dt

The analytic solution to this problem is

z(t) = e0-_) - e t

v_(t) = _(1--t)

u(t) = -2e (1-_)

(32)

(33)

(34)

This problem was run for a variety of shape function orders, numbers of Gauss points,

and numbers of elements. The code assumes a free time problem, introducing a nonlinear

equation (H(tI) -/_ = 0) even into linear problems. Knowing this, in all cases all of the

linear equations were solved in a single iteration, while that last nonlinear equation con-

verged better than quadratically. This problem is easy enough to work by hand reasonably,

and the Jacobian matrix generated by the code matched the one we derived explicitly for

the second-order shape function case.

Also, since all of the errors in all of the equations in (29) were solved to within 1.0e- 10,

the values for the costate were always just the negative of those for the control and the

state boundary conditions were met. Therefore in comparing results, we will look at the

initial and final values of only the control.

Table 1: Errors in initial and final values of control

for various values of higher-order finite-element parameters

u(to) u(tl) Gauss Shape Fn. Number of
Error Error Points Order Elements

5.18e-2 1.41e-1 1 1 1

8.58e-4 2.33e-3 2 2 1

6.00e-6 1.63e-5 3 3 1

2.36e-8 6.41e-8 4 4 1

5.92e-ll 1.61e-10 5 5 1

1.23e-2 3.34e-2 2 1 2

5.12e-5 1.39e-4 2 2 2

9.12e-8 2.48e-7 3 3 2

9.01e-ll 2.45e-10 4 4 2

5.35e-14 1.50e-13 5 5 2
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As one can see, the errors reduce dramatically as the order of the shape functions

increases. Not shown is a similar decrease in error as the number of Gauss points incxease3,

to a minimum when the number of Gauss points equals the order of the element. This is

similar performance to the time-marching algorithm, as presented in our previous report.

With further analysis we will do trade studies comparing the computational effort necessary

to solve the problem with more elements vs. using higher-order shape functions.

Nonlinear Problem Next we computed some preliminary solutions to a problem with

nonlinear system dynamics that involves maximum velocity transfer of a particle of mass

m to a rectilinear path in a fixed time (see [5], pg. 59). The mass is acted on by a force of

constant magnitude ma and variable heading f_(t). The states for this problem are position

of the particle x (horizontal) and y (vertical) and the corresponding velocity components

u and v. The differential equations for this system axe then:

y=v

= acosf_

= a sfnf_

(35)

with initial conditions corresponding to a zero velocity at the origin and with terminal

constraints that the particle is in horizontal flight at a given height (assumed here to be

I)

_,_= u(o)= o

• _ = v(0) = o

• 3 = z(0) = 0

=
q25= y(tl)- I

¢_6 = v(tl) = 0

=0

(36)

for an unspecified final horizontal position x(tl) and for a final horizontal velocity u(tl)
to be maximized. The cost function is then

J = u( t f ) (37)

Reference [5] gives the analytic solution in terms of the initial force heading angle, the

final time, and the final altitude in unspecified units. These values were chosen to be 75 °, 1,

and 1 respectively. In all cases, all of the boundary conditions were mct and the horizontal

velocity was twice the horizontal position, leaving the final values of horizontal velocity,

horizontal position costate and heading angle as the three most interesting quantities to

look at for comparison purposes.

12



Table 2: Errors in final values of U(tl) , Ay(tf), and ]_(ty)

for various values of higher-order finite-element parameters

U(ts) _u(tf) _(ts) Number of Shape Fn.
error error error Elements Order

1.90e-01 4.25e-02 8.07e-03 2 1

2.77e-02 7.34e-02 1.39e-02 2 2

N/A N/A N/A 3 1
1.89e-03 7.79e--03 1.49e-03 3 2

6.77e-02 7.53e-02 1.42e-02 4 1

2.80e-03 1.55e-02 2.95e-03 4 2

5.31e-02 1.21e-01 2.28e-02 5 1

4.77e-04 1.52e-03 2.90e-04 5 2

Preliminary results are shown in Table 2. Missing values were for eases that did not

converge, which is not surprising given the small number of elements being used. For this

nonlinear problem the improvement with the higher-order element is not as dramatic. For

4 and 5 elements all errors decrease with the higher-order elements. For 2 elements some

errors do not decrease. This may be due to the need for a larger number of Gauss points

when the order is increased (6 points were used). For the simplest (h-version) element,

1 Gauss point is optimum in the sense that it is the smallest number of points which

gives acceptable error. However, when one adds the higher-order shape functions, a larger

number of Gauss points will always be required for nonlinear problems than for linear ones.

The optimum number of Gauss points seems to be dependent on both the maximum

element order and the types of nonlinearities in the problem. It is possible that there is a

simple calculation, using some terms from the equations under consideration, which can be

done for any given problem and which will approximately determine the optimum number

of Gauss points for that particular problem as a function of the orders of element from 2

up to the maximum needed. Whether this is in fact true should become clearer as more

problems are tried and more cases of these problems are run. Recent developments by

Hinnant (of the Computational Mechanics Branch at Langley) may also lead to savings in

the numerical quadrature costs.

One possible drawback of higher-order finite element schemes is the increased com-

putational effort within each element required in implementing hp-version finite elements.

We will ultimately determine whether this computational effort is sufficiently offset by the

reduction in the number of time elements used and improvements in the Newton-Raphson

convergence so as to be useful in solving optimal control problems in real time. Also,

because certain of the element interior unknowns can be eliminated at the element level by

solving a small set of nonlinear algebraic equations in which the nodal values are taken as

given, the scheme may turn out to be especially powerful in a parallel computing environ-

ment. A different processor could be assigned to each element. The number of processors,
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strictly speaking,would not be required to be any larger than the number of sub-regiom

which are free of discontinuities.
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